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Abstract

The cloud, rack-scale computing, and multi-core are the
basis for today’s computing platforms. Their intrinsic
parallelism is a challenge for programmers, specially in
areas lacking the necessary economies of scale in appli-
cation/code reuse because of the small number of po-
tential users and frequently changing code and data. In
this paper, based on an on-going collaboration with sev-
eral projects in astrophysics, we present Pydron, a sys-
tem to parallelize and execute sequential Python code
on a cloud, cluster, or multi-core infrastructure. While
focused on scientific applications, the solution we pro-
pose is general and provides a competitive alternative
to moving the development effort to application specific
platforms. Pydron uses semi-automatic parallelization
and can parallelize with an API of only two decorators.
Pydron also supports the scheduling and run-time man-
agement of the parallel code, regardless of the target
platform. First experiences with real astrophysics data
pipelines indicate Pydron significantly simplifies devel-
opment without sacrificing the performance gains of par-
allelism at the machine or cluster level.

1 Introduction

In astronomy and other big-data sciences, the data gener-
ated by experiments and simulations is growing by leaps
and bounds. Scientists have to use sophisticated comput-
ing infrastructures to be able to analyze and process all
their observations.

Scientific data is often of a different nature than busi-
ness data. Data from instruments and simulations has to
be heavily processed before conclusions can be drawn
from it. This process is repeated many times to cali-
brate and clean the data and to tune parameters and al-

gorithms. Often this process is exploratory, using non-
standard tools and ad-hoc developed code.

For example, in [29] Refregier et al. describe a pro-
cedure where repeated executions of a wide-field astron-
omy image simulator [3] are used to develop and cali-
brate the simulator, match the simulations with data from
real observations, and perform a robustness analysis on
the parameter space. With long lasting missions, such
as the RHESSI spacecraft, launched in 2002 and still
producing data today, changes to processing algorithms,
data, and infrastructure happen continuously and will
continue throughout the life time of the spacecraft and
beyond [31]. This implies a constant correction of the
data and the algorithms that adds significant overhead.

One can argue that today there are enough platforms
– hardware and software – to support such application
scenarios. However, this is far from being the case.
The way to achieve performance today is through large
scale parallelism: multi-core, rack-scale, or cloud com-
puting. Current approaches to make parallelism avail-
able to developers typically provide either low level in-
terfaces to parallel hardware (such as pthreads [7] or
MPI [14] which are non trivial to use) or they require a
complete integration into frameworks such as Spark [38]
or Hadoop [13]. With fast changing code, legacy applica-
tions as well as legacy data formats, it is often impractical
to apply such frameworks because of their rigid require-
ments in terms of data formats and algorithmic structure.
This is not a question of the adequacy of these systems
to the task at hand. It is a question of the total cost of
adapting such a framework for the entire life cycle of a
scientific mission. Code is often specific to an instru-
ment and to the research of a single group. As a result,
the economies of scale that would justify larger develop-
ment efforts, as required to adopt existing frameworks,
are just not there.
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In this paper we argue for an alternative approach to
separate application specific code from the paralleliza-
tion framework (language and run-time). Our approach
tries to provide maximum flexibility and ease of use for
the application developer, with a system that takes care of
parallelization, deployment, and scheduling on a variety
of target infrastructures.

Our system, Pydron, can semi-automatically paral-
lelize sequential Python code and run the result on multi-
core, cluster, or cloud systems. The API consists only of
two Python decorators: one to mark functions that should
be parallelized, and one to mark functions that are free of
side-effects. We use Python because of its wide spread
use in the astronomy community. Pydron might even
open the door for scientists to start using cloud based sys-
tems such as Hadoop and Spark by not requiring them to
change their programming habits and not having to deal
with the parallel infrastructure used to run the code.

Existing approaches, such as SEJITS [9], have auto-
matically parallelized Python code when the code is re-
stricted in form and data types, or introduced systems,
such as CIEL [21], that can scale to multi-machine in-
frastructures when the application is written in a domain
specific language. Pydron combines the advantages of
both approaches.

With Pydron, the paper makes the following contribu-
tions:

• Pydron allows scientists to work in the language and
with the tools they are familiar with, while giving
them access to multi-core, cluster and cloud infras-
tructures.

• We show that the barrier for the application devel-
oper to benefit from modern infrastructures can be
significantly lowered by using semi-automatic par-
allelization.

• We demonstrate how a dynamic data-flow graph can
be used to counter the limitations of statical analysis
when applied to a dynamic language.

• We present a system with three interchangeable el-
ements that can be used to apply the ideas both to
other languages and to other execution platforms –
both hardware and software.

2 Related Work

Big data in scientific applications has lead to a large va-
riety of systems to make the use of high performance
infrastructures simpler for the developer.

Science Data Archives A significant effort has been
made to simplify the analysis of scientific data once it has
been collected and processed into science-ready prod-
ucts. For data that can be represented in tabular form,
e.g. the Sloan Digital Sky Survey [33], databases are typ-
ically used. The large data volumes and the sophisticated
queries can made specialized extensions to the database
system necessary [32]. When data does not easily fit into
a relational data model, other approaches are required,
such as SciDB [5], a database system that generalizes
the relational concept to multidimensional arrays to bet-
ter support data types such as images or spectra. Many
of these extensions are application specific and are rarely
used in other contexts.

Delayed Execution Before data can be analyzed, it
needs to be processed. Many of the languages currently
in widespread use were not designed with parallelization
in mind, which leads to a demand for easy-to-use inter-
faces between the language and the parallel infrastruc-
ture. One approach, used by Spark [38], Weaver [6], or
FlumeJava [10] is to collect expressions during the exe-
cution of the program. Instead of directly executing an
operation, an object is returned that represents the not-
yet-calculated result. Those objects can then participate
in other operations, resulting in an expression graph. The
expression graph is then evaluated in parallel.

Such systems typically introduce a set of data types to-
gether with operations that can be applied to them. The
close control of the system over both data and operators
allows for efficient parallelization and sophisticated data
management. However, it also forces the developer to
formulate the code using only the data formats and op-
erators provided. For the scientific applications we are
interested in, this is a significant limitation as those ap-
plications often use legacy code and data formats.

Source-to-Source Translation The approach used by
SEJITS [9] or Parakeet [30] is to translate the source
code into another programming language, such as
CUDA [22] or C++, more suited for the targeted in-
frastructure. The translation and subsequent compilation
typically happens just-in-time during execution. The per-
formance improvement comes from a more efficient tar-
get language, and / or from parallel execution on hard-
ware such as graphics processor units. These systems
place constraints on the code they can translate: Not all
data types and operations may be available in the tar-
get language, and since Python is dynamically typed,
the systems typically require complete type inference.
For example, both SEJITS and Parakeet operate only
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on NumPy [17] data types and cannot handle other ob-
jects. This makes such systems attractive to speed up
inner loops, where the amount of translated code is rel-
atively small, and it it easier to comply with the con-
straints. Thus, parallelization is typically fine grained.
Pydron targets infrastructures on which Python is avail-
able, and can therefore avoid the constraints that result
from a translation into a different language.

Domain Specific Languages When parallelizing at a
coarse granular level, near the outer most loops, the dis-
tributed tasks will use a significant amount of unmodi-
fied application’s code. Applying strong constraints is
less practical. SWIFT [36], CIEL [21], or PigLatin [24],
use custom ’orchestration’ languages in which the outer-
most loops are parallelized.

Parallelization of the actual computations in the in-
ner loops are typically not addressed in those languages.
Instead, such systems provide convenient ways to call
code written in other languages. The orchestration lan-
guages are often functional or have other means to avoid
side-effects which would hinder automatic paralleliza-
tion. Those constraints are less restrictive than in the
source-to-source translation approach since they only ap-
ply to the outer loops and not to the code called from
within. Systems such as Taverna [23] also belong to this
category. They use a graphical programming language,
in the form of a work-flow graph, to specify the orches-
tration of the computation. A separate language enforces
a strict separation between orchestration and computa-
tion. Pydron blurs the barrier between orchestration and
computation and avoids the learning curve of an addi-
tional language.

Streaming Data streaming systems such as Spark
Streaming [39] and Naiad [20] use a data-flow graph
representation. Records are passed along the edges, an
the vertices represent operations on them. Several of the
non-streaming systems also use graph representations in-
ternally. In those systems vertices are executed once, and
data that flows along the edges typically represent larger
units of data (for example sets of records). Data stream-
ing can achieve finer parallelization, on the granularity
of individual records, while keeping the graph at a man-
ageable size since there is no need to have a vertex per
record.

For use-cases that can be formulated as record streams,
such systems can scale well to many nodes. The devel-
oper has to provide the implementation of the vertices
and, unlike Pydron, also has to provide the structure of

Figure 1: Pydron Overview

the graph, for example with a SQL or LINQ [37] expres-
sion.

Static Compiler Optimization Modern processors
support parallelism in various ways, with multiple cores,
multiple threads, and vectorized instructions. Compile-
time optimizations to make use of those features have
been studied extensively [12]. Those approaches are lim-
ited by the large search space of such optimizations. As
a result such optimizations are typically only applied to
relatively simple innermost loops and not at higher lev-
els.

In contrast to these systems, Pydron parallelizes reg-
ular Python code, similar to compiler optimizations or
source-to-source translation, but it uses a coarser granu-
larity and scales beyond shared memory systems. Exist-
ing systems that can scale to such an infrastructure use
either domain specific languages or force the developer
to formulate the problem in a form dictated by the sys-
tem. In Pydron, however, the parallelization and execu-
tion are separated. As a result, Pydron can easily tar-
get either multi-core, clusters, or cloud platforms (or a
combination there of). Our approach supports the com-
plete Python language, without the constraints of existing
source-to-source translation systems. Since we do not
translate the distributed code into a different language,
we are not limited to support only those data types and
functions from Python libraries that have equivalents in
the target language.

3 System Overview

Pydron operates by translating Python into an interme-
diate data-flow graph representation. The graph is then
evaluated by a scheduler sub-system which uses a dis-

3
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tribution sub-system to execute individual tasks to the
worker-nodes.

Dynamic-typing, late-binding, and side-effects makes
static analysis of Python code hard. We use a dy-
namic data-flow graph to account for the dynamic na-
ture of Python. This is is a similar approach as used by
CIEL [21], and we too use dynamic changes to the graph
to handle data dependent control flow, such as loops and
branches. We take this idea a step further and continu-
ously refine the data-flow graph to incorporate informa-
tion about object types and the data itself as it becomes
known during execution.

Pydron consists of three components (Figure 1):
The translator transforms Python code of those func-

tions decorated with @schedule into their initial graph
representation. All language constructs can be translated.
The translation happens at run-time, the first time the
function is invoked. The translation process is described
in Section 5.

When a translated function is invoked, the scheduler
component analyzes the graph to decide in which order
the tasks have to be executed and which of them may run
in parallel. It fills a queue with tasks that are ready for
execution. When the results become known after execu-
tion, the scheduler is informed. The scheduler is respon-
sible for making the dynamic graph changes and to add
those tasks that have now become ready for execution to
the queue. Scheduling is described in Section 6.

The tasks in the queue are distributed to worker nodes
for execution. The distribution system is responsible to
acquire the resources and to start the Python interpreters
(typically one per core) which will execute the tasks, as
well as to release the resources at the end. It also deploys
the the user’s application on the worker nodes. We have
several back-ends implemented to support cloud, cluster
and multi-core infrastructure. The distribution system is
described in Section 7.

Pydron has been designed to make these components
interchangeable so as to allow extensions to target other
languages and execution platforms. The components de-
scribed in this paper focus on achieving full support for
the Python language with greatest flexibility for the de-
veloper.

4 Language API: Decorators

To make the system as easy to use as possible, the API
of Pydron consists only of two decorators. @schedule
marks the functions which should be considered for au-
tomatic parallelization. This allows the developer to con-
trol which parts of the application the system will paral-

lelize. Since the developer marks complete methods with
@schedule, and not individual loops or statements, this
is typically a simple task as most applications will have
only a few central functions that orchestrate the process.

The @functional decorator informs Pydron that the
marked function is free of side-effects and may be run
on a different machine. The function has to meet the fol-
lowing criteria:

• No modification of objects passed as arguments.

• Arguments and return values need to support serial-
ization with Python’s pickle API [25].

• No assignments to global variables.

• No environment interactions.

The criteria apply only to the observed behavior of the
function, not to every operation within its implemen-
tation. Especially, the last criterion can be interpreted
rather freely as it isn’t a technical constraint of Pydron.

Environment interactions are not tracked by our sys-
tem and could lead to non-deterministic behaviour if ex-
ecuted in parallel. Sometimes this can be acceptable. If,
for example, log messages are generated inside a func-
tion marked with @functional, a non-deterministic order
of the log messages should be acceptable.

Another common situation is file IO. Open file handles
cannot be passed to marked functions since Pydron has
currently not support for remote file operations. Often
it is sufficient to track the files by their filenames. If the
function only reads files for which it has received the cor-
responding filename as an argument and returns the name
of the files it has written, then the function can typically
be safely marked as @functional. Pydron will track the
file dependencies between the functions by tracking their
names, enforcing the correct order of execution. This
is especially handy when operating on clusters with a
shared file system. In astronomy, many codes already
use files to store intermediate data products, making this
workaround particularly simple.

We don’t currently automatically check if the condi-
tions for the @functional decorator hold, even though
some automatic checks could be implemented to support
the developer in this decision.

5 Language Translation

The intermediate data-flow graph used by Pydron is di-
rectional, acyclic, and bipartite. There are two types of
nodes: Value-nodes which represent immutable data and
tasks which represent operations on data.

4
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Figure 2: Operator Translation

Figure 3: Function Call Translation

Figure 2 shows the data-flow graph for a simple ex-
pression. In general, variables become value-nodes. Ex-
pressions and statements become tasks. Intermediate val-
ues in expressions are also represented by value-nodes.
Those have no direct correspondence with a Python vari-
able, but behave no differently otherwise.

Functions with the @schedule decorator are translated
the first time they are invoked. Pydron uses Python’s
built-in parser to create an abstract syntax tree of the
function’s code. This tree is then traversed twice. A
first pass identifies the scope of the variables. The ac-
tual translation happens in the second pass.

In work-flow systems such as Taverna [23] there are
also other type of edges. In Pydron dependencies be-
tween tasks can only result from data dependencies.

5.1 Function Calls
Functions are first-class objects in Python. The invoked
function is represented by a value-node since the func-
tion may itself be the result of an operation. This value-
node is an input to a call-task, together with the argu-
ments passed to the function. The return value is again a
value-node. Figure 3 shows a simple example.

Pydron supports all of Python’s language features for
function calls, such as keyword arguments and argument
lists.

In general, we cannot know at translation time which
function is invoked. We have to assume that it may have
side-effects or modify arguments passed to it in-place.
This leads to additional edges connected to the task (as
described in Section 5.3).

To improve the readability of the data-flow graphs in
this paper, we show a slightly compacted form. Instead
of showing the function calls as in Figure 3, we hide the
input for the function object and name the call task-node
by the function. We will also hide intermediate value-
nodes, as shown in Figure 2, from expressions. Instead

Figure 4: Static Single Assignment Form

we directly connect the two tasks.

5.2 Static Single Assignment Form

Python variables can be reassigned. This conflicts with
the property that value-nodes represent immutable data.
Therefore a one-to-one relationship between variables
and value-nodes is not possible. We translate the Python
code into a static single assignment form [11]. A Python
variable is represented by a series of value-nodes, each
representing the content the variable would hold for a
period of the time in a sequential execution of the code.

Figure 4 shows an example. The variable x is assigned
twice. The value node x1 represents the content before
the += operator is executed, x2 represents the content af-
ter. Once this operator has been executed, both x1 and
x2 are known and the scheduler (see Section 6) will be
able to schedule both calls to f for parallel execution. We
don’t show the subscripts explicitly in the other figures as
the order can be derived easily from the graph structure.

5.3 In-place modifications

Python objects can change after their creation. This
poses a problem since value-nodes represent immutable
data. Creating a copy before a modification is impracti-
cal since the data of the value-node may not have value
semantics.

Pydron uses another solution based on the following
observation: The value represented by a value-node be-
comes known once the producing task has been executed.
The value becomes permanently unknown after an in-
place modification on the value-node. Conceptually, the
value-node still represents the unchanged value. If the
task which performs the in-place modification is exe-
cuted after all other tasks that use that value-node have
completed, then the modification will not have an observ-
able effect as the value-node will no longer be needed.

An operation with a potential in-place modification
is translated differently. The input edge that connects
the task with the affected value-node is flagged as last-
read. A new value-node to represent the modified value
is added as an output, in accordance with the static sin-

5
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Figure 5: Synchronization point

gle assignment form (see Section 5.2). The scheduler is
aware of the last-read flag and ensures correct ordering
of task-executions.

In the general case, this is still insufficient to guarantee
the same results since the objects changed in-place may
be referenced from other value-nodes as well. For each
affected value-node, the above special translation would
have to be applied. We cannot identify them in general.
Therefore, whenever there is a risk of having an in-place
modification that may affect other value-nodes, we make
the task into a synchronization point.

A pseudo variable is introduced to model synchroniza-
tion points. This variable is implicitly read by all tasks.
A synchronization point is translated as an in-place mod-
ification on this variable. The last-read edge created by
that translation ensures that all previous tasks have to be
executed before the synchronization point. All tasks after
the synchronization point will use the new value-node,
representing the changed pseudo variable, as an input,
and will therefore be forced to wait til after the synchro-
nization point.

Synchronization points are also used to model opera-
tions with potential side-effects. Such as a call to a func-
tion which is not marked with @functional. Since the in-
voked function is not known at translation time, all calls
are initially translated as a synchronization point. We
will use the adaptive graph refinement to remove those
synchronization points for @functional functions.

Figure 5 shows an example. The last-read flag forces
the addition to complete before f is invoked. The assign-
ment of the pseudo-variable ρ , forces the multiplication
to execute after f .

There would be more straight-forward ways to model
synchronization points, for example by having ρ as an
output of the addition, but this method allows us to
reuse the technique of in-place modifications, reducing
the overall complexity of the system.

5.4 Attribute and Subscript

When used as a right-hand-side expression, both at-
tributes and subscripts are translated to a task which re-
ceives the object as an input. For attribute access, the

Figure 6: Attributes and Subscripts

name of the attribute is stored in the task. In case of a
subscript, the indices are also passed as inputs. Pydron
supports all indexing constructs, including slicing. Fig-
ure 6 shows a simple example with both attribute and
subscript used as a right-hand-side expression.

Both attributes and subscripts can be used as a left-
hand-side expression as well. Those tasks have the as-
signed value as an additional input. By its nature, such
an assignment is an in-place modification on the object,
for which additional edges have to be added to the graph,
as described in Section 5.3.

5.5 @functional Decorator
Functions decorated with @functional are not changed at
all. The only effect is that Pydron internally keeps track
of those functions.

When the function object on a call-task (see Section
5.1) becomes known during the evaluation of the graph,
the scheduler checks if the invoked function is @func-
tional. If so, the graph is changed to remove the syn-
chronization point.

This usually happens quite early during the evaluation
of a graph as most invoked functions will be stored in
global variables (Section 5.9) and are not the result of
operations.

5.6 Conditional Statements
The translation of the if statement makes use of the dy-
namic data-flow graph. The complete if statement is ini-
tially translated into a single task. The condition is an
input to this task. Both the body and the else section are
translated individually into sub-graphs.

During translation of the body and else sections, the
variables read and assigned are kept track of. They too
become inputs and outputs of the if -task.

A variable in Python can have an undefined content if
it is assigned in only one of the sections. In the data-flow
graph each value-node must be the output of a task. For
such situations a special task is added to the graph which
produces an undefined value as a result. The scheduler is
aware of value-nodes with an undefined content and will
produce the same exceptions on an attempt to use the

6
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Figure 7: while Loop Translation

value-node as Python would when using an undefined
variable.

5.7 Loops
The translation of for and while loops use the same tech-
niques as for conditional statements. The loop body and
the optional else section are translated into sub-graphs.
The complete loop construct is translated initially into a
single task. The condition, in case of a while loop, or
the iterator, in case of a for loop, is an input to this task.
The expression of a for-loop evaluates to an iterable. We
insert another task which uses the built-in function iter()
to get the iterator.

At the end of the body sub-graph the loop task itself
is added to form a tail-recursive pattern. This may seem
to enforce sequential execution, and indeed it will do so,
unless the scheduler finds the requirements met at run-
time that allow parallel execution the iterations.

Figure 7 shows an example. The while loop is first
translated into a single while-task, internally storing the
sub-graph of its body. For every variable read in the body
there is a corresponding input, and for every variable as-
signed there is an output. The sub-graph also contains
the inner while-task which forms the tail recursion.

5.8 return, break, and continue
The three statements return, break, and continue inter-
rupt the regular control flow. Pydron translates those
statements by reformulating them with conditional ex-
pressions and flag variables. Figure 8 shows an example.
The interrupting statement sets a flag variable. Once such
a flag has been set, all code afterwards is put into a con-
dition checking the flag. Since the interrupting statement
might be inside nested if statements, multiple conditions
might be introduced. The task of the loop is aware of
the flags and uses them to decide if to replace the task by
the body sub-graph or if to end the loop, with or without
a final replacement with the else sub-graph. In case of
the return statement, the return value is stored together

Figure 8: Reformulate break Statement

with the flag. This reformulation is performed on the fly
during the translation into the data-flow graph.

5.9 Non-local variables

Besides being local to the function, variables can also
belong to the module in which the function is defined
(global variables). In addition Python allows functions
to be defined within functions. Those nested functions
may access the variables of the enclosing function (clo-
sure variables). Pydron supports both global variables,
closures, and nested functions.

Python stores the value of a closure variable in a cell-
object that lives on the heap. Any access to the variable
is transparently transformed into an access to this cell-
object. We can translate functions containing closure
variables by using the same approach as Python: A read-
cell or write-cell task is added to the graph whenever a
closure variable is accessed. The task is reading or writ-
ing the cell-object when executed. This has to be done
in both the enclosed and the enclosing function. Pydron
identifies the variables that are accessed from enclosed
functions in a first pass over the abstract syntax tree.

Any access to global variables can be translated sim-
ilarly with read-global and write-global tasks. Assign-
ment to a global variable is considered a side-effect and
leads to a synchronization point. Reading a global vari-
able does not.

5.10 Exception Handing

Exception handling statements such as try-except or the
with statement are translated as well.

At first, exceptions seem to forbid any parallelism as
every operation could potentially throw an exception.
The decision if an operation is to be executed can only
be made once the previous operation has finished. We

7
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can still achieve parallelism by using speculative execu-
tion [27]. An operation is executed even if it is not clear
if an exception in a previous operation may occur. This
is possible because when we execute a task without side-
effects or in-place modifications and discard its outputs
then this has the same observable behavior as if we would
not have executed the task at all.

If a task does have side effects, this translates into a
synchronization point which forces all previous opera-
tions to complete before it. In this situation we know if
any of the previous operations raised an exception.

The cost of this method is that we potentially waste
significant resources on speculatively executed tasks
should an exception occur. If we assume that exceptions
are used in rare scenarios and not for regular control flow,
then exception handing has little impact on the potential
parallelism.

5.11 yield Statement

The yield statement is special since it transforms the
function in which it appears into a generator. When the
function is invoked, the execution of the function pauses
and an iterator is returned. When elements are consumed
from the iterator, the execution proceeds from yield to
yield statement.

The yield statement can be translated into a data-flow
equivalent which is treated specially by the scheduler.
Between reaching a yield statement and the next con-
sumption of an element on the iterator, only tasks can
be executed which are free of side-effects and perform
no in-place modifications. This is similar to exception
handing as we cannot say for sure if another element will
be consumed by the iterator, making the execution of any
operation after a yield statement speculative.

6 Scheduling

The scheduler component of Pydron takes as input the
graph produced in the translation step and produces as
output a continuously updated list of tasks to be exe-
cuted.

The scheduler becomes active when a function marked
with @schedule is invoked. It keeps track of the execu-
tion progress and enforces the correct order of execution
and decides which tasks may run in parallel.

A task is ready for execution if the following condi-
tions are met:

• All its inputs are known.

• The task does not require further changes of the
graph.

• For any input with the last-read flag (see Section
5.3) all other tasks that share this input have already
completed.

This guarantees the correct order of execution. If multi-
ple tasks fulfill those criteria, they may execute in paral-
lel.

All tasks that are identified as ready for execution are
placed in a queue. This queue is read by the distribu-
tion system (Section 7). The distribution system informs
the scheduler once the execution of a task has completed.
The outputs of the finished tasks become known, poten-
tially leading to more tasks becoming ready for execu-
tion.

The scheduler also uses the information that becomes
available during execution for refinement of the data-
flow graph. The availability of run-time information al-
lows for various optimizations, of which a small number
has already been implemented in Pydron.

6.1 Adaptive Graph Refinement

Some tasks will require changes to the graph. Every time
the value of a value-node becomes known the scheduler
informs the tasks which have this value-node as an in-
put and allows them to change the graph. There are two
kinds of changes made to the graph:

• Removal of a synchronization point (Section 6.2).

• Replacement of the task-node by a sub-graph (Sec-
tion 6.3).

6.2 Removal of synchronization points

The dynamic nature of Python often doesn’t allow to
make strong guarantees from the code alone. This forces
us to translate the code into a graph with many synchro-
nization points. The most common cause are call expres-
sions, since the invoked function is not known at trans-
lation time (see section 5.3). Once the called function
becomes known, the scheduler can check if it is marked
as @functional. If so, the synchronization point is re-
moved. The two value-nodes for ρ are merged into one
and the last-read flag is removed.

In most codes, the functions themselves are not the
result of expressions, but are either globally defined or
object attributes, therefore most synchronization points
can often be removed early in the execution.
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Figure 9: while loop parallelization

6.3 Loops
After the translation, there is a single node in the graph
for a loop (section 5.7). Loop tasks are replaced by their
sub-graphs during scheduling. According to the loop
condition, the scheduler replaces the looop task with ei-
ther its body or else sub-graph. Since the body sub-graph
contains the loop node again, a tail-recurison is formed.
At all stages the graph is acyclic which is a different
approach as taken by Naiad [20] were loops are mod-
eled with feed-back edges and the control flow is imple-
mented with timestamps on the records passed through
the graph.

If the decision for the execution of the next iteration
depends on the complete execution of the body, or if the
body contains a synchronization point, then the replace-
ment of the tail-recursive tasks must happen after execut-
ing all previous tasks, resulting in a sequential execution.
But if the condition is known early, as it is often the case
with for-loops, then the complete loop can be unrolled in
a short time.

Figure 9 shows the graph from the while loop of Figure
7 after three replacements. This method can still allow
for parallelism even if the loop iterations are not com-
pletely independent of each other. If g executes faster
than h, the while loop will unroll faster than a single h
executes, allowing for several parallel executions of h.
Even if g is slow, g can run in parallel with the h call of
the previous iteration.

The summation is still executed sequentially, without
making any associativity assumptions on the potentially
overloaded plus operator.

6.4 Scheduler Relocation
The scheduler can run on the workstation of the user, but
it can also be relocated to a remote Python process man-
aged by the distribution system. If the latency between
the user’s workstation and the remote machines is sub-
stantial (such as when executing on a cloud), this will

Figure 10: Inline Substitution

greatly reduce the communication overhead. The data
transferred from and to the workstation is reduced to the
arguments passed to the @schedule function, the data-
flow graph of the function, and the return value.

6.5 Inline Substitution

If, during the evaluation of the graph, an invoked func-
tion is found to be decorated with @schedule, then this
function can be translated to a data-flow graph as well.

Instead of invoking the original Python method, the
call-task is replaced by the function’s graph. This corre-
sponds to the inline substitution optimization performed
by compilers [11]. Inline substitution can expose addi-
tional parallelism as shown in Figure 10. The call to do
is inline substituted, allowing for parallel execution of f
and g, even though f is required to calculate an argument
of the call. This works since the substitution can be per-
formed as soon as the invoked method is known, even
before the arguments are calculated.

Inline substitution is optional and the scheduler may
decide not to inline a call and instead run the original,
untranslated, function to control the granularity of the
parallelization, depending on the target execution plat-
form.

6.6 Scheduler-local Execution

Some tasks, notably those with side-effects, cannot be
distributed safely. Such tasks are executed directly
within the thread of the scheduler. Since they enforce
a synchronization point, such tasks cannot be executed
in parallel anyway.

For some tasks, it might not be worth the effort of
sending them to a worker node for parallel execution
even though it would be formally possible. For exam-
ple, multiplying two integers has no side-effects, but the
overhead of distributing this task is in no relation to the
cost of the operation itself. The scheduler can decide to
run such tasks locally.

Pydron currently applies a simple heuristic based on
the type of the operation. Since the decision has to be

9
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Figure 11: Layers of the distribution system

made only once all the input values to the task are known,
quite elaborate techniques could be used, based on oper-
ation and data size information, to balance communica-
tion and execution cost.

7 Distribution

The distribution system takes tasks that are ready for ex-
ecution and distributes them to Python run-times, poten-
tially on another machine. It is able to automatically al-
locate and free resources, so that the user only has to
run the application on a local workstation, as one would
for regular Python. The system is highly configurable to
support different infrastructures. Several configurations
can be prepared for the user to choose from.

During operation, the system typically maintains sev-
eral running Python processes on which it can execute
tasks in parallel. The task, and all the inputs, are trans-
ferred to the Python process where the task is executed.
The outputs are transferred back to the scheduler.

The main effort of the distribution system is to start or
acquire the worker nodes, start the Python processes, and
establish the means required for remote method invoca-
tion. The distribution system uses a layered architecture
(Figure 11).

7.1 Worker-Node Acquisition
Before the Python processes can be started, the machines
need to be acquired. There are several implementations
of this layer. Each provides the means to acquire ma-
chines, run a command on them, and release the ma-
chines. This API is then used to start a Python process
with a small boot-strap script passed to it as an argument.

Multi-core Back-end Python’s global interpreter lock
makes threads unusable for exploiting multi-core ma-
chines, we therefore use multiprocessing instead. This
back-end starts processes on the local machine using the
subprocess module provided by Python.

Cluster Back-end Instead of starting Python locally, a
job is submitted to the cluster’s job queue, asking for a
number of nodes on which the process is run. The job
submission is done with a configurable bash script. Py-
dron can also execute this bash script remotely via an
SSH connection as it is often required for clusters with a
login-node.

Cloud Back-end The cloud back-end first starts
worker nodes. Pydron is using Apache libcloud [1]
which supports various commercial cloud providers.
Once the instances have started, Pydron opens an SSH
connection to each to execute the command. The disk
image which is booted can be configured, as can the type
of the nodes. The image must contain a Python installa-
tion and allow SSH access. Neither Pydron nor the user’s
application need to be installed on it.

Combining Back-ends The multi-core back-end is of-
ten combined with the cluster or cloud back-end to make
use of multiple cores on multiple machines.

7.2 Establishing Communication
The boot-strap script establishes communication. Pydron
currently supports communication via TCP connections.
To mitigate problems caused by firewalls and network
address translation, connection attempts are made in both
directions. Other methods, such as MPI [14] could also
be implemented.

Each node has one communication channel to the
workstation from which Pydron was first started. Ad-
ditional channels for direct communication with other
participating nodes are opened on demand, as is needed
when the scheduler is relocated (see Section 6.4) to a
worker node.

7.3 Code deployment
To execute tasks on remote nodes, the application’s code
has to be available on the nodes. Manual deployment of
the code can be tedious, especially if the nodes do not
have access to a shared file system.

Pydron automates this process by using a Python im-
port hook [34] on the worker nodes. When a Python
module is imported which is not available on the worker
node, the import hook loads the source code from the
user’s workstation over the established communication
channel. Python’s internal caching of loaded modules
ensures that this has to be done only once per module
and Python process.

10
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The code of Pydron itself is also transferred to the
worker nodes. This simplifies the deployment of Pydron,
as it does not need to be installed on every node. It also
avoids potential version compatibility issues as all par-
ticipants use exactly the same version of Pydron.

7.4 Third-party libraries

The code deployment system also works for most third-
party libraries. This further simplifies the deployment of
the code on the worker nodes, and makes Pydron more
transparent to the user. The exception are libraries that
contain native code. Pydron currently does not attempt
to transmit native code libraries. In some cases, partic-
ularly when the worker-nodes are binary compatible, or
when the libraries can be installed via Python package
repository, automatic deployment of such libaries could
be made possible, but this currently not implemented.

An example of a library which has to be manually de-
ployed is SciPy [17]. This does not prevent us from using
SciPy. The primary data type, NumPy arrays, are serial-
izable with pickle. The methods of SciPy which do not
change the data in-place can be whitelisted as @func-
tional.

7.5 Remote Procedure Call

A simple remote procedure call (RPC) protocol is es-
tablished on top of the communication channel. It uses
Python’s pickle API to serialize the invoked function, the
arguments passed to it, as well as the return value or the
raised exception.

7.6 Executing Task-Nodes

RPC connections are established from the node on which
the scheduler is running to all other available nodes. The
distribution system keeps track of idle and busy workers.
Tasks added by the scheduler to the queue of ready tasks
are assigned to idle workers. The task is then executed
on the node using an RPC call. The result is passed back
to the scheduler.

7.7 Fault Tolerance

With increased number of nodes, the probably of a single
node failing is greatly increased. The distribution system
is in charge of monitoring the Python processes. If a pro-
cess fails to react, it is taken out of the set of available
workers. If it was executing a task, this task is put back
to the queue of tasks ready for execution. Since only

tasks without side-effects are executed on remote nodes
there are no conflicts arising from executing a task twice.

Currently, we follow a simple policy of rescheduling
failed tasks. In the future we will explore more complex
policies that could take user input into consideration.

8 Discussion

It is the simplicity of use and design that makes Pydron
attractive for domains such as astronomy that lack the
economy of scale to justify porting efforts to a differ-
ent language or to other frameworks. The system works
without sophisticated language analysis, scheduling, or
resource management. Using more advanced implemen-
tations for those components will certainly improve the
performance further. CIEL [21], in particular, is a sys-
tem that contains many components from which Pydron
could profit.

Pydron shares the architecture with systems such as
CIEL and Dryad [16]: An orchestration language is
translated into a data-flow graph. The individual tasks,
represented by nodes, are typically written in a language
such as Java. They are sent to worker nodes for execu-
tion. Such systems have the advantage over approaches
such as MapReduce [13] in handling iterative computa-
tions [21]. In Section 2 we discussed how a separate or-
chestration language can be a barrier to adopt a solution.
In addition, there are also technical consequences. Two
separate languages implies two spaces in which objects
can reside:

Data Space for the data which is a processed by the in-
dividual tasks.

Coordination Space for data that is required to deter-
mine the control flow.

CIEL allows data to pass from the data space to the coor-
dination space, by use of a special operator which makes
assumptions on the format of the data. This feature al-
lows for data dependent control flow. Pydron goes a step
further. By avoiding a separate language, there is only
one space where objects reside. Processed data and co-
ordination data can be treated equally, as one would in a
regular single-threaded program, reducing the complex-
ity the developer has to handle to profit from parallel in-
frastructures.

The separation between orchestration code and com-
putation code still exists in Pydron. Functions anno-
tated with @functional contain the code executed within
a task, functions annotated with @schedule mark orches-
tration code. Only orchestration code is translated into

11
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the data-flow graph. @functional code might be sent to
a worker node for execution, but there it is executed as
regular Python code. The line between the two is less
obvious in Pydron, since there is no need to use a differ-
ent language for orchestration code. In addition, Pydron
has the option to execute orchestration code regularly,
instead of translating it into a data-flow graph (Section
6.5), further blurring the line.

Both CIEL and Pydron change the data-flow graph
based on the data. CIEL allows a task to spawn new
tasks during execution. To account for the dynamic
nature of Python, Pydron requires additional changes,
most notably it those required to remove the synchro-
nization points (Section 5.3), We also allow tasks to trig-
ger changes to the graph before all its inputs are avail-
able.

There are a number of features in CIEL that Py-
dron is currently missing, such as the multiple-queue-
based scheduler, fault tolerance for the master node, and
streaming. Such features will be integrated into future
versions of Pydron.

Fully automated parallelization of sequential lan-
guages has been studied in depth which has lead to sys-
tems such as Helix [8]. Such systems perform a static
analysis on the code to identify loops that can be paral-
lelized. The search space for the inference of the data de-
pendencies includes all code potentially executed within
the loop. This effectively limits such approaches to the
inner-most loops. Dynamic languages such as Python
are particularly difficult in this respect. In consequence,
parallelization is fine granular, and small orchestration
overheads quickly become the bottleneck. This reflects
in the way such systems operate. For example, the par-
allelization constructs may be directly inserted into the
compiled code, instead of evaluating a data-flow graph
at run-time.

Pydron parallelizes on a coarse granularity. To keep
the search space reasonable, the user has to help out with
the @functional annotation. The code analysis of Pydron
is similar to the data-flow analysis performed by auto-
matic parallelization systems, yet the design is primarliy
driven by the need of coping with the dynamic nature of
Python. Since Pydron can make decisions at run-time, it
can avoid some of the complex problems such as pointer
analysis [15]. Such analysis could still be integrated into
Pydron in the future as it would allow certain decisions
to be made before the actual data is computed.

We don’t see Pydron as a replacement for systems
such as Helix. In fact, it would be possible to combine
both. Combining Pydron with another parallelization

Figure 12: Random Forest Implementation

system works very well in practice. In section 7.4 we de-
scribe how Pydron can be used with SciPy [17]. If SciPy
is compiled with multi-threaded ATLAS [35], then the
numerical functions would exploit multiple-cores, while
Pydron can parallelize the outer loops across several ma-
chines.

9 Scalability

In this section, we demonstrate the scalability of Py-
dron for multi-core, cluster and cloud infrastructures.
We also provide insights through several experiments on
how Pydron operates. All measurements were taken with
CPython 2.7.6.

9.1 Multi-core
We use a machine-learning example for the multi-core
and cluster measurements. The random forest method [4]
trains several decision trees on a random sub-set of the
training samples. Predictions are made by majority vote
among the predictions made by the individual decision
trees. We used 50% of the samples in the MNIST hand-
written digits data-set for training [19] (approx. 27 MB).

The code is shown in Figure 12. The train_forest
function is annotated with @schedule. The for-loop
can be unrolled completely in the beginning of the
execution since train_tree is annotated with @func-
tional. train_forest returns a nested function to make
predictions, using a closure variable to access the for-
est. If predictions were expensive, then annotating
the nested function with @schedule would parallelize
the list-comprehension as well. The implementation of
train_tree is using scikit-learn from SciPy [17] internally.
Pydron handles calls to thrid-party libraries as any other
function call (see section 7.4).

Figure 13 shows the learning time on a single ma-
chine with 64 cores (AMD Opteron 6276) when running
the code using regular Python and when using Pydron
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Figure 13: Random Forest Training on Multi-core

Figure 14: Random Forest Training on Cluster

with an increasing number of cores. It scales nearly lin-
early and only flattens once the communication overhead
becomes noticeable. This is to be expected as Pydron
currently makes no use of shared memory for commu-
nication. The horizontal line marks the execution time
with regular, single threaded Python, which is about 90s
(~1%) faster than Pydron with a single core.

9.2 Cluster

Figure 14 shows the result of the same machine-learning
code when Pydron is instructed to execute it on a cluster
(Intel Xeon L5520). We use the combination of the clus-
ter and the multi-core back-end to utilize the 8 cores of
each node. We run the experiment with up to 16 cluster
nodes with a total of 128 cores, at which point the scala-
bility starts to degrade due to communication overheads.
The execution time of regular, single threaded, Python is
not shown in the figure as it would be about eight times
slower than a single node. When running Pydron with
only one of the node’s cores, the difference is compara-
ble to the one shown for the 64-core machine.

Figure 15: Parameter Sweep Code

9.3 Cloud

Running the machine-learning code on the cloud pro-
duces results comparable to those on the cluster, we
therefore use cloud computing to demonstrate Pydron on
a larger astronomy use-case.

PynPoint [2] is a method for detection of planets out-
side the solar system. The challenge of exo-planet detec-
tion lies in the extreme contrast between the bright host
star and the faint planet. Optical effects and atmospheric
distortions spread the light of the star over an area larger
than the orbit of the planet. PynPoint models the point-
spread function of the star with a principal component
analysis (PCA) to remove the spread-out light from the
star, leaving the planet visible in the residue.

We use a real high-contrast imaging data-set of β Pic-
toris [18] and the massive exo-planet orbiting it. The
data set was taken with the Very Large Telescope. The
raw data is publicly available from the European South-
ern Observatory (ESO) archive (Program ID: 084.C-
0739(A)). Some data reduction steps [26] have already
been applied to the data. The data set consists of 24000
individual exposures, totaling to 3.8 GB.

PynPoint operates in two main phases. In the first
phase, the images are prepared and the basis of the PCA
are calculated. In the second phase, the modeled point-
spread-function of the star is removed from the expo-
sures. The exposures are then rotated to compensate for
earth’s rotation and aggregated into the final result. The
second phase is fast enough to be used interactively by
the scientists to study the effect of the method’s param-
eters. However, some parameters affect the first phase
which takes about 15 minutes to execute. We have used
Pydron to scale the parameter sweep over the two main
parameters used in the first phase.

Six values are used for each parameter, resulting in
a total of 36 executions. The code is shown in Fig-
ure 15. in_file contains the path to the input data file
in HDF5 format. The two functions create_images and
create_basis are both decorated with @functional. Since
they are independent of each other, all 72 calls could be
run in parallel. The implementation of those methods
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Figure 16: Scalability on Amazon EC2

use numerical routines from SciPy [17] which use multi-
threading internally to utilize multiple cores. Pydron can
be used together with such libraries. We use Pydron’s
cloud back-end to parallelize across multiple cloud in-
stances. To get a clearer performance analysis we do not
combine it with the multi-core back-end. Thus we use
one Python process per instance.

We use Amazon EC2 with m2.large instances, with
two CPU cores each. Adding cores would not scale well
with this workload, as the routines can only profit from
the parallel SciPy library for a part of their execution.
The cloud instances are connected to a shared file system
used as a scratch space. This file system is provided by
two separate EC2 instances (c2.2xlarge) which provide
the storage from a total of four solid state drives. The file
system is clustered with glusterFS [28]. The file system
initially contains the input data.

Figure 16 shows the execution time for up to 32 in-
stances (64 cores). The execution time includes the time
required to start the instances, which takes about one
minute.

Other than in the machine-learning use-case, the ac-
tual data is transmitted over a shared file system, while
Pydron only handles the paths, as described in Section 4.
The Pydron induced overhead is therefore very small,
about 7s. With a large number of instances the through-
put of the scratch file system becomes a bottleneck, as
each parameter combination produces approximately 4
GB of data. This bottleneck could be easily addressed
by increasing the number of nodes of the clustered file
system.

The overhead introduced by Pydron is neglectable in
this use-case. The translation of the Python code into the
initial data-flow takes five milliseconds. Figure 17 shows
that less than a second is spent for all dynamic changes in
the data-flow graph and that less than eight seconds are

Figure 17: Pydron overhead for communication and dy-
namic graph changes on Amazon EC2

required for communication, including serialization with
pickle. Both can partially run in parallel, reducing the
effective impact. With 32 instances the workers are lim-
ited by the shared file system, the lower CPU utilization
speeds up pickle.

10 Conclusions

Semi-automatic parallelization provides easy-to-use ac-
cess to high performance computing infrastructures for
many problems that can be parallelized at a sufficiently
coarse granularity.

By putting the focus on non-intrusiveness and a low
learning curve, instead of on optimal usage of infrastruc-
ture, Pydron can lower the barrier for scientists to access
high performance computing infrastructures.

We plan to release Pydron under an open source li-
cence. Please check www.pydron.org for availability.
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